States and Homomorphisms on the Pták Sum

Olga Nánásiová¹

Received April 30, 1993

Summing of a Boolean algebra and a quantum logic has been defined by P. Pták and studied by, e.g., V. Janiš, Z. Riečanová, O. Nánásiová, and C. A. Drossos. It was shown that there is a special case when this structure is a direct product. Drossos has studied the connection between this structure and a Boolean power. In this paper we investigate the conditions when the Pták sum is a free product and when the connection is between the center of L and the structure of states on $B \oplus L$.

1. INTRODUCTION

Let L be a quantum logic. In this paper we consider the quantum logic as an orthomodular lattice. Precisely, L is a partially ordered set with the first and the last elements θ and I, respectively, with the orthocomplementation $\perp: L \rightarrow L$ such that

- (1) $(a^{\perp})^{\perp} = a$ for $a \in L$.
- (2) $a \le b$ implies $a^{\perp} \ge b^{\perp}$, where $a, b \in L$.
- (3) For all $a \in L$ we have $a^{\perp} \lor a = 1$.
- (4) For any $a_1, \ldots, a_n \in L$ there exists $\bigvee_{i=1}^n a_i \in L$.
- (5) If $a \le b$, then $b = a \lor (b \land a^{\perp})$ $(a, b \in L)$.

Two elements $a, b \in L$ are orthogonal if $a \leq b^{\perp}$, and $a, b \in L$ are compatible $(a \leftrightarrow b)$ if $a = (a \lor b) \land (a \lor b^{\perp})$. If $a_i \in L$ for any $i = 1, 2, 3, 4, \ldots, n$ and $b \in L$ is such that $b \leftrightarrow a_i$ for all i, then $b \leftrightarrow \bigvee_{i=1}^n a_i$ and $b \land (\bigvee_{i=1}^n a_i) = \bigvee_{i=1}^n (a_i \land b)$ (Varadarajan, 1968).

A subset $L_0 \subseteq L$ is a *sublogic* of L if for any $a \in L_0$ we have $a^{\perp} \in L_0$ and for any $a_1, \ldots, a_n \in L_0$, $\bigvee_{i=1}^n a_i \in L_0$. If for any $a, b \in L, a \leftrightarrow b$, then L is a *Boolean algebra*. In the following we shall pick up C(L), the *center* of L

1957

¹Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak Technical University, 813 68 Bratislava, Slovakia.

 $[C(L) = \{a \in L; a \leftrightarrow b \text{ for any } b \in L \text{ (Varadarajan, 1968; Pták and Pulman-nová, 1989).} \}$

A state m on L is the map from L to the interval [0, 1] on the real line such that (i) m(I) = 1; (ii) $m(\bigvee_{i=1}^{n} a_i) = \sum_{i=1}^{n} m(a_i)$ if $a_i \le a_j^{\perp}$ for all $a_i \ne a_j$ (i, j = 1, 2, ..., n). If L is a quantum logic, then S(L) will be the set of all states on L. For $S \subseteq S(L)$ we shall say that (L, S) is a quite full system (qfs) if $\{m \in S: m(a) = 1\} \subseteq \{m \in S: m(b) = 1\}$ implies $a \le b$ (Pták and Pulmannová, 1989).

Let L_1, L_2 be some logics. Then a mapping $f: L_1 \rightarrow L_2$ is called a *homomorphism* if

- (1) $f(a^{\perp}) = f(a)^{\perp}$.
- (2) $f(a \lor b) = f(a) \lor f(b)$ for a, b from L_1 such that $a \le b^{\perp}$.

The set $R(f) = \{f(a); a \in L_1\}$ is called the range of homomorphism f. Two homomorphisms $h: L_1 \to L_3$, $g: L_2 \to L_3$ are called *compatible* if for any $a \in L_1$ and for any $b \in L_2$, $h(a) \leftrightarrow g(b)$ (where L_1, L_2, L_3 are quantum logics).

If a mapping $f: L_1 \rightarrow L_2$ is injective homomorphism and f^{-1} is homomorphism, then f is called an *embedding* (Pták and Pulmannová, 1989).

Let L, Q be some quantum logics. Let m and h be a state on L and a homomorphism from Q to L, respectively. It is clear that a map m_h from Q to L such that $m_h(a) = m(h(a))$ is a state on Q.

Definition 1.1 (Pulmannová, 1988). Let $(L_1, 0_i, 1_i, {}^{\perp}_i)$, $i \in I$, be a set of ortholattices. An ortholattice $(\mathcal{L}, 0, 1, {}^{\perp})$ is a *free product* of the ortholattice $L_i, i \in I$, if:

(i) For any $i \in I$, there is an injective homomorphism $u_i: L_1 \to \mathscr{L}$ preserves the lattice operations and orthocomplementation so that each L_i can be considered as a subalgebra of \mathscr{L} , and for $i, j \in I$, $i \neq j$, $L_i - \{0_i, 1_i\}$ are disjoint.

(ii) \mathscr{L} is generated by $\bigcup_i \{u_i(L_i): i \in I\}$.

(iii) For any ortholattice A and for a family of homomorphisms $\phi_i: L_i \to A, i \in I$, there exists a homomorphism $\phi: \mathcal{L} \to A$ such that $\phi \circ u_i$ agrees with ϕ_i for all $i \in I$.

Definition 1.2 (Pták, 1986). Let B and L_1 be a Boolean algebra, and a quantum logic, respectively. Then $B \oplus L_1$ is quantum logic with the following properties:

- (1) There exist embeddings $f: b \to L$, $f_1: L_1 \to L$ such that $f(a) \land f_1(b) = 0$ iff a = 0 or b = 0.
- (2) There is no proper sublogic L containing $f(B) \cup f_1(L_1)$.
- (3) For each couple of states m₀∈S(B), m₁∈S(L₁) there exists a state μ∈S(B⊕L₁) such that μ(f(a)) = m₀(a) for each a∈B and μ(f₁(b)) = m₁(b) for any b∈L₁ [μ = (m₀, m₁)].

States and Homomorphisms on the Pták Sum

This structure is known as the *Pták sum*. In the following we will mention only the main properties of this structure. For any $a \in B \oplus L_1$ there exists an orthogonal partition 1 from $B \{c_1, \ldots, c_n\}$ and $a_1, \ldots, a_n \in L_1$ such that $\underline{a} = \bigvee_{i=1}^n f(c_i) \wedge f_1(a_i)$. We can write \underline{a} as the "vector" $\underline{a} = [(c_1, a_1), \ldots, (c_n, a_n)]$ and $f(c) = [(c, 1), (c^{\perp}, 0)], f_1(a) = [(1, a)]$.

2. HOMOMORPHISMS AND STATES

Proposition 2.1. Let L, A be a quantum logic, B be a Boolean algebra, and $B \oplus L$ be the Pták sum. Then a map $\gamma: B \oplus L \to A$ is a homomorphism iff there exist two homomorphisms h, g such that $h: B \to A, g: L \to A$, and $h(a) \leftrightarrow g(b)$, for any $a \in B$ and any $b \in L$ where $h = \gamma \circ f, g = \gamma \circ f_1$.

Proof. Let γ be a homomorphism. It is clear that $\gamma \circ f$, $\gamma \circ f_1$ are homomorphisms as well and, moreover, $\gamma \circ f \colon B \to A$, $\gamma \circ f_1 \colon L \to A$. Let $a \in B$ and $b \in L$. We have

$$[(1, b)] = [(a, b), (a^{\perp}, b)] = (f(a) \land f_1(b)) \lor (f(a^{\perp}) \land f_1(b))$$

Then

$$\gamma[(1, b)] = \gamma[f(1) \land f_1(b)] = \gamma \circ f(1) \land \gamma \circ f_1(b) = \gamma \circ f_1(b)$$

but

$$\gamma[(a, b), (a^{\perp}, b)] = \gamma(f(a) \wedge f_1(b) \vee f(a^{\perp}) \wedge f_1(b))$$
$$= \gamma \circ f(a) \wedge \gamma \circ f_1(b) \vee \gamma \circ f(a^{\perp}) \wedge \gamma \circ f_1(b)$$

If we put

 $\gamma \circ f = h$ and $\gamma \circ f_1 = g$

then we get

$$g(b) = (h(a) \land g(b)) \lor (h(a^{\perp}) \land g(b))$$

This means that $g(b) \leftrightarrow h(a)$ holds for every $a \in B$ and $b \in L$.

Now we show the opposite implication. Let $h: B \to A$, $g: L \to A$ be such homomorphisms that $g(b) \leftrightarrow h(a)$ for any $b \in L$ and any $a \in B$. We show that a map τ from $B \oplus L \to A$ defined as

$$\tau([(a_1, b_1), \ldots, (a_n, b_n)]) = \bigvee_i h(a_i) \wedge g(b_i)$$

is the homomorphism.

Obviously $\tau([(1, 1)]) = 1$ and $\tau([(1, 0)]) = 0$. Without loss of generality it is enough to show the property of the supremum for the following

Nánásiová

elements: $\underline{b} = [(a, b_1), (a^{\perp}, b_2)], \underline{c} = [(a, c_1), (a^{\perp}, c_2)], b_i \le c_i^{\perp}, i = 1, 2.$

$$\tau(\underline{c} \vee \underline{b}) = \tau([(a, b_1 \vee c_1), (a^{\perp}, b_2 \vee c_2)]$$

$$= h(a) \wedge g(b_1 \vee c_1) \vee h(a^{\perp}) \wedge g(b_2 \vee c_2)$$

$$= h(a) \wedge (g(b_1) \vee g(c_1)) \vee (h(a^{\perp}) \wedge (g(b_2) \vee g(c_2))$$

$$= h(a) \wedge g(b_1) \vee h(a) \wedge g(c_1) \vee h(a^{\perp}) \wedge g(b_2) \vee h(a^{\perp}) \wedge g(c_2)$$

$$= h(a) \wedge g(b_1) \vee h(a^{\perp}) \wedge g(b_2) \vee h(a) \wedge g(c_1) \vee h(a) \wedge g(c_2)$$

$$= \tau(\underline{b}) \vee \tau(\underline{c})$$

From the known properties of a quantum logic it is clear that $r = s^{\perp}$ iff $r \lor s = 1$ and $r \le s^{\perp}$. Let $[(a_1, b_1), \ldots, (a_n, b_n)] \in B \oplus L$. From the definition of the map τ we have

$$\tau([(a_1, b_1^{\perp}), \ldots, (a_n, b_n^{\perp})]) = \bigvee_i h(a_i) \wedge g(b_i^{\perp})$$

and

$$\tau([(a_1, b_1), \ldots, (a_n, b_n)]) = \bigvee_i h(a_i) \wedge g(b_i)$$

Evidently

$$\left(\bigvee_{i} (h(a_{i}) \wedge g(b_{i}))\right) \vee \left(\bigvee_{i} (h(a_{i}) \wedge g(b_{i}^{\perp}))\right) = 1$$

Let us put $r = \bigvee_i (h(a_i) \land g(b_i^{\perp})), s = \bigvee_j (h(a_j) \land g(b_j))$. Then $s^{\perp} = \bigwedge_j (h(a_j)^{\perp} \lor g(b_j^{\perp}))$. Now we have for any $i, j \in \{1, \ldots, n\}, h(a_i) \land g(b_i^{\perp}) \le h(a_i) \lor (b_i^{\perp})$, and $h(a_i) \land g(b_i^{\perp}) \le h(a_j)^{\perp}$ for any $i \ne j$. From this we can conclude that

$$\bigvee_i h(a_i) \wedge g(b_i^{\perp}) \leq \bigwedge_j (h(a_j)^{\perp} \vee g(b_j^{\perp}))$$

This means

$$\bigvee_{i} (h(a_{i}) \wedge g(b_{i}^{\perp})) \leq \left(\bigvee_{i} (h(a_{i}) \wedge g(b_{i}))\right)^{-1}$$

and then

$$\tau([(a_1, b_1^{\perp}), \ldots, (a_n, b_n^{\perp})]) = \tau([(a_1, b_1), \ldots, (a_n, b_n)])^{\perp}$$

Thus we conclude that the map τ is the homomorphism from $B \oplus L$ to A.

1960

Proposition 2.2. The Pták sum $B \oplus L$ is a free product iff L is a Boolean algebra.

Proof. Let *B*, *L* be some Boolean algebras and $B \oplus L$ be the Pták sum. If we put $B \oplus L = \mathscr{L}$ and $u_1 = f$, $u_2 = f_1$ it is clear that the conditions (i), (ii) of the free product are fulfilled. Let *A* be any Boolean algebra. Let maps $\phi_1: B \to A, \phi_2: L \to A$ be homomorphisms. Hence $R(\phi_1), R(\phi_2)$ are subsets of $A, \phi_1 \leftrightarrow \phi_2$. From Proposition 2.1 there exists a homomorphism $\phi: \mathscr{L} \to A$ such that $\phi_1 = \phi \circ u_1, \phi_2 = \phi \circ u_2$. From this it is clear that $B \oplus L$ is the free product.

Let $B \oplus L$ be a free product and A be any orthomodular lattice. Let $g: L \to A$ be any homomorphism. Let $a, b \in R(g)$ such that a is not compatible to b. Let us put $H = \{a, a^{\perp}, 0, 1\}$. And let h be a homomorphism from B on H such that there exists an element z with h(z) = a. It is clear that such a homomorphism exists and moreover h(z) is not compatible to $b \in R(g)$. From Proposition 2.1 it follows that there does not exist a homomorphism γ from $B \oplus L$ to A. This means that $B \oplus L$ is not the free product so that A is the Boolean algebra. From the definition of the free product we have that A is any orthomodular lattice; then we can put A = L. Now we can conclude that L is the Boolean algebra.

Let L be a quantum logic. Let us denote S(L) as the set of all states on L. Let B be a Boolean algebra. If $M_1 \subseteq S(B)$ and $M_2 \subseteq S(L)$, then $M_1 \times M_2 \subseteq S(B \oplus L)$ such that any $\mu \in M_1 \times M_2$ iff there exist $m_1 \in M_1$, $m_2 \in M_2$ with $\mu = (m_1, m_2)$.

Proposition 2.3. Let B and L be a Boolean algebra and a quantum logic, respectively, and $M_1 \subseteq S(B)$, $M_2 \subseteq S(L)$. Then $(B \oplus L_1, M_1 \times M_2)$ is qfs iff both (B, M_1) , (L_1, M_2) are qfs.

Proof. Let $(B \oplus L, M_1 \times M_2)$ be qfs. Let us denote $\underline{B} = \{\underline{d} \in B \oplus L: \underline{d} = [(c, 1), (c^{\perp}, 0)]$ for $c \in B\}$. It is clear that \underline{B} is a Boolean subalgebra $B \oplus L$ which is isomorphic to B and the restriction $M_1 \times M_2$ on \underline{B} is isomorphic to M_1 . From this we have (B, M_1) is qfs. Analogously, $\underline{L} = \{\underline{k} \in B \oplus L: \underline{k} = [(1, k)], k \in L\}$ is a sublogic of $B \oplus L$ and it is isomorphic to M_1 . Then (L, S_1) is qfs.

Let $(B, M_1), (L, M_2)$ be both qfs. Let $\{\mu \in M_1 \times M_2 : \mu(\underline{a}) = 1\} \subseteq \{\mu \in M_1 \times M_2 : \mu(\underline{b}) = 1\}$. We know there exist $c_1, \ldots, c_n \in B$ an orthogonal decomposition 1 in B, and $a_1, \ldots, a_n, b_1, \ldots, b_n \in L_1$ such that

$$\underline{a} = [(c_1, a_1), \dots, (c_n, a_n)], \qquad \underline{b} = [(c_1, b_1), \dots, (c_n, b_n)]$$

If $\mu(\underline{a}) = 1$, then there is exactly one $i \in \{1, ..., n\}$ such that $\mu(\underline{a}) = \sum_{j=1}^{n} m_0(c_j)m_1(a_j) = m_0(c_i)m_1(a_i) = 1$. From the assumption we have that

Nánásiová

 $\mu(\underline{a}) = 1$ implies $\mu(\underline{b}) = 1$. Then $m_1(b_i) = 1$. This means that $a_i \le b_i$. Moreover, (B, M_1) is qfs, too, and from that for any $c \in B, c \ne 0$ there exists a state $m_0 \in M_1$ with $m_0(c) = 1$. Hence $a_i \le b_i$ for all i = 1, ..., n (where $c_i \ne 0$).

It is clear that $S(B) \times S(L) \subset S(B \oplus L)$. The following example shows that these sets do not have to be equal.

Example. Let $B = \{0, 1, a, a^{\perp}\}$, $C(L) = \{0, 1, b, b^{\perp}\}$ (*L* is a quantum logic). Let *h* be an isomorphism from *B* to C(L) such that h(a) = b. Let $m \in S(L)$ such that $m(b) \neq 0, 1$ and $\mu = (m_h, m), \alpha \in S(B \oplus L)$ such that $\alpha[(a_1, b_1), \ldots, (a_n, b_n)] = \sum m_i(h(a_i) \wedge b_i)$. It is clear that $\alpha/f(B) = \mu/f(B), \alpha/f_1(L) = \mu/f_1(L)$, but $\alpha \neq \mu$. It is sufficient to take $\underline{c} = [(a, h(a^{\perp}), (a^{\perp}, 0)].$

Proposition 2.4. Let $B \oplus L$ be a Pták sum and h be a map from B to L. A map $\gamma: B \oplus L \to L$ which is defined as $\gamma([(c_1, a_1), \ldots, (c_n, a_n)]) = \bigvee_{i=1}^{n} h(c_i) \land a_i$ is a homomorphism iff h is the homomorphism from B to C(L).

Proof. From the Proposition 2.1 we know that γ is a homomorphism iff the maps $\gamma \circ f, \gamma \circ f_1$ are homomorphisms and moreover $\gamma \circ f \leftrightarrow \gamma \circ f_1$. But $\gamma \circ f_1$ is the identical isomorphism from the assumption; then it is clear that $h = \gamma \circ f$ is the homomorphism whose range is the subset of C(L).

Proposition 2.5. Let L be a quantum logic such that $C(L) \neq \{0, 1\}$ and B be a Boolean algebra. Let $m \in S(L)$ and h be a homomorphism from B to C(L) such that there exist $c \in B$ with $m(h(c)) \neq 1, 0$. Then there exist two states $\alpha, \mu \in S(B \oplus L)$ such that $\alpha \neq \mu$ but $\alpha/f_1(L) = \mu/f_1(L), \alpha/f(B) = \mu/f(B)$.

Proof. From the previous proposition we know that there exists a homomorphism $\gamma: B \oplus L \to L$ such that $\gamma([(c_1, a_1), \ldots, (c_n, a_n)]) = \bigvee_i h(c_i) \land a_i$ for any $[(c_1, a_1), \ldots, (c_n, a_n)]$ from $B \oplus L$. If $m \in S(L)$, then m_{γ} is a state on $B \oplus L$ and

$$m_{\gamma}([(c_1, a_1), \ldots, (c_n, a_n)]) = \sum_{i=1}^n m(h(c_i) \wedge a_i)$$

On the other hand, m_h is a state on B and from the definition of the Pták sum there exists a state μ on $B \oplus L$ such that

$$\mu([(c_1, a_1), \ldots, (c_n, a_n)]) = \sum_{i=1}^n m(h(c_i))m(a_i)$$

1962

Now it is enough to calculate

$$\mu([(c, h(c^{\perp})), (c^{\perp}, 0)]) = m(h(c))m(h(c^{\perp})) \neq 0$$

and

$$m_{\gamma}([(c, h(c^{\perp})), (c^{\perp}, 0)]) = m_{\gamma}(h(c) \wedge h(c^{\perp})) = 0$$

On the other hand, we have

$$\mu([(1, a)]) = m_{\gamma}([(1, a)])$$

$$\mu([(c, 1), (c^{\perp}, 0)]) = m_{\gamma}([(c, 1), (c^{\perp}, 0)]). \quad \blacksquare$$

Proposition 2.6. Let B and L be a Boolean algebra and a quantum logic, respectively, and let (L, M) be qfs. Here M is a convex set of states.

(i) If there exists a homomorphism h from B to L such that $R(h) \neq \{0, 1\}$, then there exist states μ, α from $S(B \oplus L)$ such that

$$\mu/f(B) = \alpha/f(B), \qquad \mu/f_1(L) = \alpha/f_1(L), \qquad \text{but } \mu \neq \alpha$$

(ii) $C(L) = \{0, 1\}$ iff for any homomorphism h from B to C(L) and for any state m from M the relation

$$\sum_{i=1}^{n} m(h(c_i))m(a_i) = \sum_{i=1}^{n} m(h(c_i) \wedge a_i)$$

is satisfied, where $[(c_1, a_1), \ldots, (c_n, a_n)] \in B \oplus L$.

Proof. (ii) Let $C(L) = \{0, 1\}$; then for any homomorphism h from B to C(L) we have $R(h) = \{0, 1\}$ and it is clear that for any state m on L we have

$$\sum_{i=1}^{n} m(h(c_i))m(a_i) = \sum_{i=1}^{n} m(h(c_i) \wedge a_i)$$

Let

$$\sum_{i=1}^{n} m(h(c_i))m(a_i) = \sum_{i=1}^{n} m(h(c_i) \wedge a_i)$$

for any state m from M and for any homomorphism from C(L). Then for any $b \in B$ we have

$$m(h(b) \wedge h(b^{\perp})) = m(h(b))m(h(b^{\perp})) = 0$$

This means that m(h(b)) = 1 or 0.

Hence *M* is qfs, and for the convex set of states, we have $h(b) \in \{0, 1\}$ for any *h*. Then $C(L) = \{0, 1\}$.

REFERENCES

- Grätzer, G. (1968). Universal Algebra, Van Nostrand, Princeton, New Jersey.
- Janiš, V. (1990). Notes on sums of Boolean algebras and logics, Demonstratio Mathematica, 23.
- Janiš, V., and Nánásiová, O. (n.d.). Pták's sum and direct products, preprint.
- Janiš, V., and Riečanová, Z. (n.d.). Completeness in sum of Boolean algebras and logic, preprint.
- Nánásiová, O. (n.d.). Homomorphism on the Pták sum, preprint.
- Pták, P. (1986). Summing of Boolean algebras and logics, *Demonstratio Mathematica*, 19, 349-357.
- Pták, P., and Pulmannová, S. (1989). Kvantové logiky, VEDA Bratislava.
- Pulmannová, S. (1988). Free product of ortholattices, Acta Scientiarum Mathematicarum, 52, 47-52.
- Varadarajan, V. S. (1968). Geometry of Quantum Theory, Vol. 1, Van Nostrand Reinhold, Princeton, New Jersey.